Chemical potential...
Exemple :

Wikipedia (article chemical potential 2013)

“In thermodynamics, chemical potential, also known as partial molar free energy (wrong), is a form of potential energy (wrong) that can be absorbed or released during a chemical reaction (wrong) […] At chemical equilibrium or in phase equilibrium the total sum of chemical potentials is zero (wrong or at least too vague)

Not so easy !

In thermodynamics

Closed system (constant energy E volume V number of particles N)

$$
\begin{align*}
d S &= \frac{1}{T} d E + \frac{P}{T} d V - \frac{\mu}{T} d N \\
& \iff d E = T d S - P d V + \mu d N
\end{align*}
$$

$$
\frac{\mu}{T} = - \left(\frac{\partial S}{\partial N} \right)_{E,V}
$$

Physical meaning ?
Thermal equilibrium

Energy exchange between 1 and 2

\[E_1 + E_2 = E^{\text{tot}} \Rightarrow dE_2 = -dE_1 \]

At equilibrium, entropy \(S \) is maximum

\[
\begin{align*}
 dS &= dS_1 + dS_2 \\
 &= \frac{\partial S_1}{\partial E_1} dE_1 + \frac{\partial S_2}{\partial E_2} dE_2 \\
 &= \frac{\partial S_1}{\partial E_1} dE_1 - \frac{\partial S_2}{\partial E_2} dE_1
\end{align*}
\]

\[
 dS = \left(\frac{1}{T_1} - \frac{1}{T_2} \right) dE_1 \geq 0
\]

If \(T_1 > T_2 \) then \(1/T_1 - 1/T_2 < 0 \) so that \(dE_1 \leq 0 \)

Energy tends to flow from a system with a high value of \(T \) to a system with a low value of \(T \). This energy transfer continues until \(T_1 = T_2 \)

Physical meaning of temperature = tendency of a system to give energy
Mechanical equilibrium

Volume exchange between 1 and 2
\[dE_2 = -dE_1 \text{ and } dV_2 = -dV_1 \]

At equilibrium, entropy \(S \) is maximum
\[
\text{d}S = \text{d}S_1 + \text{d}S_2 = \left(\frac{\partial S_1}{\partial E_1} - \frac{\partial S_2}{\partial E_2} \right) \text{d}E_1 + \left(\frac{\partial S_1}{\partial V_1} - \frac{\partial S_2}{\partial V_2} \right) \text{d}V_1
\]

Physical meaning of pressure = tendency of a system to take volume

Volume tends to be transferred from a system with a low value of \(P \) to a system with a high value of \(P \). This volume change continues until \(P_1 = P_2 \)
Chemical equilibrium

Particles exchange between 1 and 2

\[dE_2 = -dE_1 \text{ and } dN_2 = -dN_1 \]

At equilibrium, entropy \(S \) is maximum

\[
dS = dS_1 + dS_2 = \left(\frac{\partial S_1}{\partial E_1} - \frac{\partial S_2}{\partial E_2} \right) dE_1 + \left(\frac{\partial S_1}{\partial N_1} - \frac{\partial S_2}{\partial N_2} \right) dN_1
\]

\[
\rightarrow dS = \left(-\frac{\mu_1}{T_1} + \frac{\mu_2}{T_2} \right) dV_1 \geq 0 \quad (\text{if } T_1 = T_2 = T)
\]

If \(\mu_1 > \mu_2 \), \(dN_1 \leq 0 \)

Particles tends to flow from a system with a high value of \(\mu \) to a system with a high value of \(\mu \). This particle transfer continues until \(\mu_1 = \mu_2 \)

Physical meaning of chemical potential

= tendency of a system to give particles
Chemical potential...

Chemical potential...

In chemistry also, you can be very rich but not very generous (attractive forces)...

Exemples of chemical potential

Physical meaning of chemical potential

= tendency of a system to give particles

Chemical potential of a proton \((H^+)\) : pH

\[
pH = \left(\mu_{H^+}^0 - \mu_{H^+} \right) / RT \ln 10
\]

pH : tendency of a solution to take \(H^+\)

Chemical potential of water moleculaes : humidity

\[
\ln P_{\text{water}} / P^0 = \left(\mu_{\text{water}}^0 - \mu_{\text{water}} \right) / RT
\]

humidity : tendency of an atmosphere to give water molecules – further units exists following the context (hydric potential, etc…)

Chemical potential of electrons : Nernst potential

\[
E = E^0 + \left(\frac{RT}{nF} \right) \ln \frac{a_{\text{ox}}}{a_{\text{red}}} = -\frac{\mu_e}{F} + \text{Cte}
\]

\(E\) : tendency of system to take electrons

Further exemples : pC, pOH, etc…
Significance of the standard term

Chemical potential

\[
\mu_i = \mu_i^0 + k_B T \ln a_i = \mu_i^0 + k_B T \ln a_i^{\text{ideal}} + k_B T \ln(\gamma_i)
\]

Standard term \(\mu_i^0\)
- gives the mass action law constant

Activity coefficient \(\gamma_i\)
- depends on \(N\) body effects

Role of the standard state

The standard state 0 is such that the activity coefficient and the ideal activity are both equal to 1.

It depends on the choice of the ideal activity expression \(a_i^{\text{ideal}}\)

- **Gas phase**: infinitely dilute pure gas with \(P = P^0 = 1\) bar \(\quad a_i^{\text{ideal}} = \frac{P_i}{P^0}\)
- **Liquid or solid mixtures**: pure system \(\quad a_i^{\text{ideal}} = x_i\)
- **Solutions (convention)**:
 - Solvent: pure solvent \(\quad a_i^{\text{ideal}} = x_i\)
 - Solutes: infinitely dilute solute with \(C = C^0 = 1\) mol.L\(^{-1}\) or \(m = m^0 = 1\) mol.kg\(^{-1}\) or \(x = 1\) (depending on the choice of the standard state) \(\quad a_i^{\text{ideal}} = C_i / C^0\) or \(m_i / m^0\) or \(x_i\)

\[-RT \ln K^0 = \sum_i \nu_i \mu_i^0\]
Typically:
\[a_i^{\text{ideal}} = x_i = \frac{N_i}{N_{\text{tot}}} \]
(sometimes with a prefactor)

This formula is exact only for an ideal mixture.

Ideal activity represents a mixing configurationnal entropy.

\[\Omega = \binom{N_1 + N_2}{N_2} = \frac{(N_1 + N_2)!}{N_1!N_2!} \]

Ideal mixture = similar molecules (same microscopic configurations)

if mixing, there is only one difference.
the number of states is multiplied by \(\Omega \)

\[S^{\text{mix}} = k_B \ln \Omega = k_B \ln \left(\frac{(N_1 + N_2)!}{N_1!N_2!} \right) \approx -k_B \left(N_1 \ln(x_1) + N_2 \ln(x_2) \right) \]

Corresponding mixing chemical potential:

\[\mu_i^{\text{mix}} = \frac{\partial G^{\text{mix}}}{\partial N_i} = -T \frac{\partial S^{\text{mix}}}{\partial N_i} = k_B T \ln x_i \]
Ideal terms are typically valid

① For ideal mixtures (perfect gas, etc…)
② At low concentration (gas, solute particles)
③ At high concentration (solvent, liquid or solid mixtures)

Typically:
- Valid for ① and ② because the interactions between the particles are not important
- Valid for ③ because of Gibbs-Duhem relation

Activity coefficients represent the interactions between the particles that are not included in the standard term.
- solute/solute interactions for solutions
- intermolecular interactions for gas
Entropy cost for aggregation

Free energy calculation

\[c = \text{typical concentration of solutes} \quad n = \text{aggregation number} \]

\[
G^{\text{init}} = \sum_i \mu_i^0 + NRT \ln \frac{c}{c^0} \quad G^{\text{final}} = \mu_{\text{agg}}^0 + RT \ln \frac{c}{c^0}
\]

Difference \(\Delta G = (1 - N)RT \ln c + \text{Cte} \)

If the solutes are diluted (small \(c \)), \(\Delta G \) becomes infinitely high.

association becomes not stable – at high dilution entropy always wins
Configurational entropy

Configurational entropy cost for aggregation

\[\Delta G = (1 - N)RT \ln c + \text{Cte} \]

\[\frac{\Delta G}{N} \approx -RT \ln c + \frac{\Delta G^0}{N} \]

No supramolecular organisation for infinite dilute systems

- Ostwald law (weak acids or electrolytes become strong if dilute)
- Critical micellar concentration: micelles do not exist if dilute
- Re-extraction from dilution (add solvent for re-extraction)
- No molecules in an infinite space

\[\frac{\Delta G}{N} \approx -RT \ln c + \frac{\Delta G^0}{N} \]

\[\begin{cases}
 c \geq 10^{24} \Rightarrow \frac{\Delta G^0}{N} \leq 50 \ k_B T \approx 100 \ kJ.mol^{-1} \\
 c \geq 10^{12} \Rightarrow \frac{\Delta G^0}{N} \leq 25 \ k_B T \approx 50 \ kJ.mol^{-1}
\end{cases} \]

Weak forces are forces that can be overcome by configurational entropy
Molar free enthalpy of a particle at the standard state, i.e.

- gas phase: one single molecule (because dilute)
- liquid mixture, solid mixture and solvent: pure system
- solute particles: one single solute particle dispersed in the solvent

Relatively easy evaluation (no correlation)
Standard term

Gas phase μ_i^0

Noble gas: molecule = a single atom

Hamiltonian (energy) of one single atom (Born-Oppenheimer approx.)

$$H = H_{\text{nucl}} + H_{\text{elect}} = H_{\text{internal}} + H_{\text{trans}} + H_{\text{elect}}$$

Consequence for the standard chemical potential

$$\mu^0 = \mu_{\text{int}} + \mu_{\text{trans}} + \mu_{\text{elect}}$$

$$\mu_{\text{trans}} = -k_B T \ln \left[\left(\frac{2\pi mk_B T}{\hbar^2} \right)^{3/2} \frac{k_B T}{P^0} \right]$$

$$\mu_{\text{elect}} = -k_B T \ln \left[\omega_0 + \omega_1 \exp \left(-\frac{\varepsilon_1}{k_B T} \right) + \ldots \right]$$

degeneracy and energy of the electronic levels

Experimental validation for the entropy

<table>
<thead>
<tr>
<th>Element</th>
<th>exp.</th>
<th>calc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>30.13</td>
<td>30.11</td>
</tr>
<tr>
<td>Ne</td>
<td>34.95</td>
<td>34.94</td>
</tr>
<tr>
<td>Ar</td>
<td>36.98</td>
<td>36.97</td>
</tr>
<tr>
<td>Kr</td>
<td>39.19</td>
<td>39.18</td>
</tr>
<tr>
<td>Xe</td>
<td>40.53</td>
<td>40.52</td>
</tr>
<tr>
<td>Hg</td>
<td>41.8</td>
<td>41.78</td>
</tr>
</tbody>
</table>
Gas phase \(\mu^0_i \)

Polyatomic molecules (ex: O\(_2\), N\(_2\), UF\(_6\), etc…)

\[
H = H_{\text{nucl}} + H_{\text{elect}}
\]

\[
H_{\text{nucl}} = H_{\text{internal}} + H_{\text{trans}} + H_{\text{rot}} + H_{\text{vib}}
\]

\[
\mu^0 = \mu_{\text{int}} + \mu_{\text{trans}} + \mu_{\text{rot}} + \mu_{\text{vib}} + \mu_{\text{elect}}
\]

Quantum transition for rotation and vibration

- Low temperature: fundamental state (\(\mu_{\text{rot}}, \mu_{\text{vib}}\) constant)
- High temperature: rotation or vibration (\(\mu_{\text{rot}}, \mu_{\text{vib}}\) depends on \(T\))

<table>
<thead>
<tr>
<th></th>
<th>H(_2)</th>
<th>D(_2)</th>
<th>I(_2)</th>
<th>O(_2)</th>
<th>N(_2)</th>
<th>CO</th>
<th>NO</th>
<th>HCl</th>
<th>HBr</th>
<th>CO(_2)</th>
<th>H(_2)O</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{rot}})</td>
<td>85.3</td>
<td>42.7</td>
<td>0.05</td>
<td>2.07</td>
<td>2.88</td>
<td>2.77</td>
<td>2.45</td>
<td>15.0</td>
<td>12.0</td>
<td>0.56</td>
<td>40 / 21 / 13</td>
</tr>
<tr>
<td>(T_{\text{vib}})</td>
<td>6215</td>
<td>4324</td>
<td>308</td>
<td>2256</td>
<td>3374</td>
<td>3103</td>
<td>2719</td>
<td>4227</td>
<td>3787</td>
<td>3360</td>
<td>954 1890</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>5360 954 1890</td>
</tr>
</tbody>
</table>

(in kelvin)
Ortho and para

Quantum states of the nuclei

\[\Delta E = k_B \times 175 \text{ K} \]

- \(s^{\text{tot}} = 1 \):
 - 3 states
 - Ortho \(\text{H}_2 \)

- \(s^{\text{tot}} = 0 \):
 - 1 state
 - Para \(\text{H}_2 \)

\[\mu_{\text{para}}^0 = \mu_{\text{ortho}}^0 - k_B T \ln(3) + \Delta E \]

Mass action law

\[\frac{C_{\text{para}}}{C_{\text{ortho}}} = \frac{1}{3} \exp(\Delta E / k_B T) \]

Low \(T \): only para \(\text{H}_2 \)

High \(T \): \(\frac{1}{4} \) para \(\text{H}_2 \) \(\frac{3}{4} \) ortho \(\text{H}_2 \)
Conclusion

Chemical potential

= *tendency to give particles*

Ideal activity: entropy

Standard term: internal free enthalpy or solvation

Activity coefficients: attraction (<1) or repulsion (>1) between the particles…