

Helmuth Möhwald

lecture n°1:

Ion distribution near interfaces: their manipulation with acoustic and electric fields

Molecules with chargeable groups

Manipulation of density of chargeable groups, charge, ion binding

- Treatment of Molecular Interfaces
 large difference interface-bulk,
 interfaces tend to be neutral
 a measured charge density without defined salt is useless
- Theoretical framework and experimental methods
- Zeta potential

established technique with difficult theory

Electroacoustics

new methods for colloidal analytics, but no solid theory

Langmuir monolayers as models

Unusual Salt Dependence

reduction of latent heat 40 p[mN/m] 30 -1 M 0.5 M 0.1 M pressure 10⁻²M 10⁻³M 10⁴M -10⁻⁵ M lateral 01 0<u>-</u> 40 80 120 140 60 100 area per molecule $[Å^2]$

Fig. 9. Transition temperature of large unilamellar DMPA vesicles as a function of NaCl concentration determined experimentally by light scattering (+) and calculated with the following assumptions: $K = 60 \text{ M}^{-1}$, $\Delta A/\Delta S = 0.6 \text{ Å}^2 \cdot K \cdot \text{mol/J}$, T = 331 K

> Expectation: electrostatic repulsion Favors expanded phase Salt addition hence Increases electrostatic Forces

Fig. 5. Pressure-area diagrams of DLPA for various NaCl concentrations as indicated in the figure (pH = 5.6, T = 286 K). As the amount of lipid differed between the experiments by up to 20% the curves were normalized to yield a pressure of 50 mN/m for a molecular area of 40 Å². EDTA concentration in the subphase: 10^{-4} M, except for the lowest curves, where the ionic strength was established by additon of EDTA

(C.A. Helm, L.A. Laxhuber, M. Lösche, H. Möhwald, Coll. Polym. Sci. 264(1986)46)

Interface Electrostatics (Gouy-Chapman)

Debye Hückel in 2 D

Poisson Boltzmann – eq :
$$\frac{d^2}{dx^2}\Psi(x) = -\frac{1}{\epsilon\epsilon_0}\sum_{i}q_i\rho_i(\infty)\exp\left(-\frac{q_i\psi}{kT}\right)$$

Solution analytical if linearized for $e\psi/kT$ <1, rarely valid, but works often Analytical solutions not difficult (see below)

Gouy-Chapman model leads to Grahame equation

$$\sigma = \{2 \varepsilon \cdot \varepsilon_0 \cdot kT \cdot \sum_i c_i(\infty) \cdot [\exp(-q_i \psi/kT) - 1]\}^{1/2}$$

Charge dens

concentrations

potential.

Deficiencies: homogeneous charge distribution, ion correlations neglected

H.Träuble, M.Teubner, P.Wooley, H.J.Eibl, Biophysical Chem. 4(1976)319

S.A.McLaughlin, Current Top.Membr.Transp. 9 (1977)71 C.A. Helm, L.A. Laxhuber, M. Lösche, H. Möhwald, Coll. Polym. Sci. 264(1986)46

(Gouy-Chapman-Stern theory applied (extended) to experiments)

Variables: molec. area A; ion conc. pH=log H_o^+

Chemistry in mass action law for lipid Dissociation, metal binding

$$K_H = \frac{[LH]_s}{[L^-]_s \cdot [H^+]_s}$$

$$K_M = \frac{[LM]_s}{[L^-]_s \cdot [M^+]_s}$$

 $\alpha = \frac{[L^-]_s}{[L^-]_s + [HL]_s}$

Mass action law for lipid dissoc.:
$$\sigma = \frac{e}{A} \cdot \alpha = \frac{e}{A} \cdot \frac{1^{M}}{1 + K_{H} \cdot [H_{0}^{+}] \cdot \exp(-\frac{e\psi}{kT})}$$

General with metal binding $\sigma = \frac{e/A}{1 + (K_{H} \cdot [H^{+}] + K_{M} \cdot [M^{+}]) \cdot \exp(-\frac{e\psi}{kT})}$

H.Träuble, M.Teubner, P.Wooley, H.J.Eibl, Biophysical Chem..4(1976)319

S.A.McLaughlin, Current Top.Membr.Transp. 9 (1977)71 C.A. Helm, L.A. Laxhuber, M. Lösche, H. Möhwald, Coll. Polym. Sci. 264(1986)46

- Exp. parameters: pH=6, T ≈ 300K
- Lipid param.: pK_H=1,7

Even at pH 6 and 1mM salt major fraction of L not dissociated

• Variables: ionic strength, molec.area A

Energetics

Electric energy to charge a capacitor

$$G_d = kT \int_0^\alpha \ln\left\{ \left[H^+\right] \cdot K_H \cdot \frac{\alpha'}{1-\alpha'} \right\} d\alpha'$$

 $G_c = A \cdot \int_{0}^{\sigma} \psi(\sigma') d\sigma'$

Chemical contribution from dissoc., ion binding

Change of transition pressure best meaurable

Energetics and Phase Transition

Conclusions: dissociation and ion binding at interface drastically different from bulk

Influence remarkable for nM ionconcentration

Balance achievable with 100nM conc.of monovalent ions

M.Lösche, H.M. JCIS 131 (1989) 56

Potential and counterion distribution

Numerical simulation

Most ions within 0.2nm near interf. hence difficult to resolve

Give up high depth resolution,measure lon concentration with 10 nm sublayer

Electric potential (**a**) and counterion concentration (**b**) for the GC model of the EDL. Parameters taken for simulation are: surface charge density: $-1 \bar{e}/25 \text{ Å}^2$; dielectric constant: 80; 1-1-electrolyte (mmole \cdot dm⁻³): 100 (solid lines), 10 (dashed), 1 (dotted), 0.1 (dashed-dotted).

Shapovalov et al. J.Phys.Chem.111(2007)

X-Ray Fluorescence at grazing incidence

Measure ion concentration within 4-5 nm from interface difficult for oil/water interface

Competitive Adsorption (monovalent)

പര്പ

TRXF spectra of BS monolayer on subphases containing individual alkali metal chlorides ("calibration samples") and their mixtures (systems under investigation). Subphase compositions are: KCl/CsCl 1:1 (**a**, solid line); LiCl/CsCl 9:1 (**b**, solid); CsCl (**a** and **b**, dashed) and KCl (**a**, dotted). The total salt concentration is 10 mM in all cases.

Competitive adsorption (monovalent-divalent)

Photon energy (keV)

TRXF spectra of BS monolayer on subphases containing individual alkali and alkali earth metal chlorides and their mixtures. Subphase compositions are: CsCl/CaCl2 9:1 (**a**, solid line); CsCl/BaCl2 9:1 (**b**, solid); CsCl (**a** and **b**, dashed); CaCl2 (**a**, dotted) and BaCl2 (**b**, dotted). Total salt concentration is 10 mM in all cases.

Important numbers

1) Time & to establish Debye layer with thickness 201 $\mathcal{H} = 10 \text{ nm} (10^{-3} \text{ M salt}, 300 \text{ K, water})$ $\mathcal{H} = 10 \text{ nm} (10^{-3} \text{ M salt}, 300 \text{ K, water})$ $\mathcal{H} = 10 \text{ nm} fo 10^{-3} \text{ M salt}$ $T = \frac{2t^{-2}}{2D}$ with diffusion coefficient(Nort) ~ 2.10 $\frac{5}{sec}$ T= 4. 10-9 sec (for 10-3M) ~> nsec scale 2.) Charge density on a spherical particle Assizeta potential 100mV = 4 radius R= 100nm, e= elementory charge Charge Q=4 T. EEO R. V≈ 500 e Density $\frac{Q}{4\pi R^2} = 4 \cdot 10^{11} / cm^2 \stackrel{2}{=} 4 \cdot 10^{-3} / nm^2$ ~ very small fraction of chargeable groups. 3. Jon distribution potential y= Y. exp(-zex) concentration $(\mathbf{c} - \mathbf{c}_{\infty}) = (\mathbf{c}_{\sigma} - \mathbf{c}_{\infty}) - \exp(i + \frac{e^{\gamma}}{kT}) = (\mathbf{c}_{\sigma} - \mathbf{c}_{\infty}) \exp(i + \frac{e}{kT})$

Fig. 1. Schematic representation of the charges and potentials at a positively charged interface. The region between the surface (electric potential ψ^0 ; charge density σ^0) and the *inner Helmholtz plane* (distance β from the surface) is free of charge. The IHP (electric potential ψ^i ; charge density σ^i) is the locus of specifically adsorbed ions. The diffuse layer starts at x = d (outer Helmholtz plane), with potential ψ^d and charge density σ^d . The *slip plane* or *shear plane* is located at $x = d^{\text{ek}}$. The potential at the slip plane is the *electrokinetic* or *zeta*-potential, ζ ; the *electrokinetic charge density* is σ^{ek} .

Mobility U = $2 \varepsilon z f(\kappa a)/3\eta$ in the general case and f has to be calculated

Image from Malvern

eta potential

Distance from particle surface

m٧

0

A.V. Delgado et al. / Journal of Colloid and Interface Science 309 (2007) 194-224

Refined theory on zeta potential

 $-\lambda_i(\boldsymbol{v}_i-\boldsymbol{u})-\boldsymbol{z}_i\boldsymbol{e}\nabla\Psi-\boldsymbol{k}T\nabla\log n_i=\boldsymbol{0}$

Viscous electrostatic chemical

$$\lambda_i = \frac{Ne^2|z_i|}{\Lambda_i^0},$$

Refinement needed for small particles

R.W.O`Brien, L.R.White, J.Chem.Soc.Farady Trans.II 74(1978)1607

Examples of refinements

FIG. 6.—Effect of counterion valency on the form of the mobility against : for $\kappa a = 5$.

Ion specifics

Concentration dependence

FIG. 3.—Reduced mobility E of a spherical colloidal particle in a KCI solution as a function of reduced zeta potential y_s for $\kappa a < 2.75$. In this regime the mobility appears to increase monotonically with zeta potential.

Alternating E-Field compresses and expands and thus creates sound wave (Electrokinetic sonic amplitude(ESA),loud speaker)

Sound wave creates alternating E-field (Colloidal Vibration Current, CV potential)

Wavelength=Velocity x frequency= 1000m/sec x 1 MHZ = 1 mm >> debye length

ESA of Dispersions

Informative for frequencies 1-100 MHz At high frequencies surface conduction on particles becomes relevant

Hence Colloidal Dispersions can be studied

Dynamic particle mobility

Theoretical and experimental a separate topic

Fig. 8. Modulus (a) and phase angle (b) of the dynamic mobility of spherical particles in a KCl solution with $\kappa a = 20$ as a function of frequency for different ζ -potentials; cf. Eqs. (80)–(82). Parameters: particle radius 100 nm; dielectric constant of the particles (dispersion medium): 2 (78.54); density of the particles (dispersion medium): 5×10^3 (1×10^3) kg m⁻³.

Litterature

 Ion distribution : standard text books like J. Lyklema, Fundamentals of Interfaces and Colloid Science, vol. II, Academic Press, New York, 1995, Chaps. 3, 4

specifics in citations on slides

• X-Ray-fluorescence and simulation.

V.L.Shapovalov et al., J.Phys.Chem. 111 (2007)3927-3934

- Zeta potential: J.Lyklema, above , and J.R.Hunter Foundations of Colloid Science, Oxford Univ. Press, Oxford,2001, Chap. 8.
- Electroacoustics: Best review, including experimental details

A.V.Delgado et al. J. Coll.Interf.Sci. 309 (2007) 194-224