

Jean-François Dufrêche

Ions at Interfaces

2014-2015

Electrical Double Layer

Separation chemistry: liquid/liquid and solid/liquid interfaces

- Iiquid/liquid extraction
- diffusion in porous media (solid/ liquid)

Charged interface:

Non neutral interfaces: the two surfaces are charged

Ex : solid/liquid

Qsolid ≠ 0

Qliquid ≠ 0

(but Qsolid + Qliquid = 0

Origin of the charge

Desequilibrium in the volume charge

ionic solids

- exces or defects of cation / anions
- ☞ Ex : AgI, clays, etc…

Surface chemistry

- Groups Si-OH <--> Si-O- <--> SiOH2+
- Depends on the pH
- Iocalised charge

Charged surfactant at the interface

mobile charge

A very old story

106 years ago...

Thermodynamically, if T is known, we do not minimize U but F=U-TS

The electrostatic attraction of the counterions is somewhat counterbalanced by the thermal agitation

F = U - T S minimum

Louis-Georges Gouy

(1909)

Diffuse layer = effect of the temperature

Gouy-Chapman theory

Ion distribution at the interface

95% of the calculations are still based on that approach

Poisson-Boltzmann Equation

$$C_i(x) = C_i^0 \exp\left(-\frac{q_i V(x)}{k_B T}\right)$$

Boltzmann + Poisson equations:

Gouy-Chapman theory

Characteristic length of the EDL

Gouy length L_G Size of the heavily condensed counterions

$$E_{electrostat}^{ion} = eV = e\frac{\sigma}{\varepsilon_0\varepsilon_r}L_G \approx k_BT \Longrightarrow L_G = \frac{\varepsilon_0\varepsilon_rk_BT}{e\sigma}$$

Typically Angstrom. Condensed ions are in the first layer of

the solvent molecules

Debye distance $L_D = \kappa^{-1}$

Size of the diffusion layer: distance It takes to compensate the soldid charge. Depends on the ionic force $I = \frac{1}{C} \frac{1}{C}$

$$I = \frac{1}{2}C_i Z_i^2 - \frac{1}{2}$$

$$\kappa^{2} = 4\pi L_{\rm B} \sum_{i} C_{i} Z_{i}^{2} \Longrightarrow L_{\rm D} = A \times I^{-1/2}$$

Good things about Gouy-Chapman theory

Gouy-Chapman theory

valid for monovalent electrolyte (i.e.1/1 ex NaCl) in water if the sold charge is not too important...

rightarrow At any case, far away from the interface V(x) and $C_i(x)$ are proportional to $exp(-\kappa x)$ (but κ is sometimes different from the Debye inverse length)

Globally gives correct results if the parameters are renormalized (effective charges, effective potential)

Relatively simple calculations

Diffuse layer (GC approach)

----: Gouy-Chapman theory (PB equation) — Molecular model (Mol. Dyn.) *Mol. Phys. 2003*

----: Gouy-Chapman theory (PB equation) — Molecular model (Mol. Dyn.) Mol. Phys. 2003

Specificity of ions

only two parameters: charge and size with respect to the interface

- wrong at high ionic charge (typically if valency >2)
- reglect ion sizes whereas the concentration is very high !
- reglect the molecular nature of the solvent (desolvation)
- reglect polarisability forces (Van der Waals)
- Separation surface is fixed and it does not fluctates

Stern layer

all these effects are hidden in the
Stern layer whose parameters can
be fitted...

Inversion of surface charge

And even sometimes

Polarisability of the solvants

Onsager and Samara

Polarisability of the solvant

Ion close to the interface is expelled because of hte solvant polarisation

Modelling: image charge Q'

Onsager and Samara

Polarisability of the ions

Jungwirth et Tobias, J. Phys. Chem. B 105, 10468 (2001)

Molecular models

Big polarisable ions attracted by the interface

Figure 9. Snapshots viewed from the air side from MD simulations of the solution/air interfaces of 1.2 M sodium halide solutions: (a) sodium fluoride, (b) sodium chloride, (c) sodium bromide, and (d) sodium iodide. Coloring scheme: fluoride ion, black; chloride anion, yellow; bromide anion, orange; iodide anion, magenta; sodium cation, green; water oxygen, blue; water hydrogen, gray.

Polarisability of the ions

lons attracted to a water/oil interface is it is polarisable

Effect due to the polarisation of the ions

The polarisation of the interface creates a dipolar moment on the ion which attracts it at the interface

Stabilizing effect

Depends strongly on the charge and polarisability of the ions

Numerically

 $G_{image} \approx k_B T$ for polarisable ions

Depletion of big ions

A big size is enough to attract a big ion at the interface

forbidden to the solvent because of the solvent molecule size

domain if the ion is at the interface \rightarrow bigger solvent entropy \rightarrow stable

Effect due to the solvant entropy

Can be calculated (Asakura et Oosawa potential)

Increases the polarisability attraction (big ions are polarisable)

Brazilian Nuts effect

Role of the ion hydrated sizes

Size (hydrated diameter of the ions)

- Important role in solution (departure from ideality)

Corresponding rules

Small ions are preferentially associated to small sites (solvent expelled \rightarrow entropy gain)

Big ions are preferentially associated to big sites (they do not have to expell water to be associated)

solvation/desolvation question : depends to the ion size compared to hte one of the interface site (hydrophobic/phillic force)

les de sunaces

Collins 2004

The Nature is not simple !

Molecular simulations of cations at a montmorillonite clay surface

Cs⁺

- Cesium ions are dehydrated because clay cavities exactly correspond to the ion size → solvation by the surface instead of solvation by water
- Sodium (and further) ions stay solvated by water.

Beware of general laws...

Specific effects are subtle effects...