Magali Duvail

Researcher CEA/Fondamental Research Division
Ph.D. in Chemistry (HDR)


ICSM/LMCT (Bât. 426)
Site de Marcoule
BP 17171
F-30207 Bagnols-sur-Cèze Cedex
Tel: +33 4 66 79 57 21
Fax: +33 4 66 79 76 11
e-mail : magali.duvail ad


Research activities

Mesoscopic modelling of microemulsions

Collaborations: Pr. L. Arleth (University of Copenhagen, Danemark), Dr. S. Marcelja (Australian National University, Canberra) 

The mesoscopic modelling of the microemulsion (water / oil / surfactant) thermodynamics properties is crucial to understand the phenomena occuring during the liquid-liquid extraction process (mainly used for the ions separation).
The mains objectives of this study are :

  • the description and prediction of the microemulsion microstructures,
  • bridging the microscopic properties of such solutions (at the molecular scale) and the macroscopic ones.

Multi-scale modeling of aqueous and organic phases for the liquid-liquid extraction

Collaborations: Dr. Ph. Guilbaud (CEA), Pr. J.-F. Dufrêche (ICSM), Dr. J. J. Molina (PECSA and ICSM), Dr. T. N. Nguyen (ICSM), M. Bley (ICSM), M. Coquil (CEA), Dr. S. van Damme (ICSM), Dr. Y. Chen (ICSM)

Binary solutions of lanthanoids and uranyl (UO22+salts (ClO4, Cl, NO3) at different concentrations are studied by means of classical molecular dynamics simulations using explicit polarization. Dissociation / association processes of ion pairs in aqueous solution are analyzed using potential of mean force (PMF) profile calculations.
Thanks to the calculations of the McMillan-Mayer potentials, ion pair association constants are also calculated. Activity coefficients are also determined using an Associated Mean Spherical Approximation (AMSA) approach.

Molecular dynamics simulations of lanthanoid in organic phases (alcohol and alkane) are performed to understand the solvation properties of such cations. We also focus on the thermodynamics properties of micelles composed of ions, water and extractant molecules in apolar solvents (such as alkanes), and especially their curvature free energies. These preliminary simulations pave the way for further structural studies in organic solvents: anion coordination, association / complexation with ligands (monoamide, diamide, nitrogen ligands, ...), and therefore may improve the understanding of ion speciation in organic phases.

Aluminosilicate fluids

Collaborations: Dr. A. Poulesquen (CEA), Dr. D. Petit (L2C, University Montpellier), J. Lind (Woellner GmbH & Co.KG, Germany), A. Coste (ICSM)

Projet : ANR DYNAMISTE ANR-15-CE07-0013-01

DYNAMISTE aims at developing experimental and theoretical tools in order to optimize industrial processes in which alkali solutions of aluminosilicates are involved in an attempt of developing sustainable and clean industry. This project gathers the expertise of ICSM, a CEA department for the waste retreatment and conditioning and specialist for the characterization and formulation of cement-based materials, and a CNRS team at the Laboratoire Charles Coulomb expert in multi-scale NMR technics, in collaboration with the German industrial partner Wo?llner GmbH & Co.KG, who is one of the leaders in production of alkali silicate solutions.

This project relies on a synergic approach coupling both experiments and modeling. In order to access all the spatio-temporal phenomena of such systems, the experimental part consists in studies based on (i) rheology techniques coupled with scattering techniques: Dynamic light scattering (DLS), small and wide angle x-ray and (or) neutron scattering and diffraction (SWAXS, SANS and XRD), and on (ii) multi-scale NMRapproaches (from Å to few tens μm). In the meantime, the theoretical part is based on multi-scale methods coupling molecular dynamics and coarse-grained simulations, allowing for accessing the structural and dynamical properties of these fluids at both the molecular and supramolecular scales.



[34] Combined Supramolecular and Mesoscale Modelling of Liquid–Liquid Extraction of Rare Earth Salts
A. Karmakar, M. Duvail, M. Bley, Th. Zemb, and J.-F. Dufrêche. Colloids Surf. A 555, 713 – 727 (2018)

[33] Activity Coefficients of Aqueous Sodium, Calcium, and Europium Nitrate Solutions from Osmotic Equilibrium MD Simulations
M. Bley, M. Duvail, Ph. Guilbaud, and J.-F. Dufrêche. J. Phys. Chem. B 122 (31), 7726 – 7736 (2018)

[32] Molecular Simulation of Binary Phase Diagrams From the Osmotic Equilibrium Method: Vapour Pressure and Activity in Water–Ethanol Mixtures
M. Bley, M. Duvail, Ph. Guilbaud, Ch. Penisson, J. Theisen, J.-Ch. Gabriel, and J.-F. Dufrêche. Mol. Phys. 116 (15-16), 2009 – 2021 (2018)

[31] Simulating Osmotic Equilibria: A New Tool to Calculate Activity Coefficients in Concentrated Aqueous Salt Solutions
M. Bley, M. Duvail, Ph. Guilbaud, and J.-F. Dufrêche. J. Phys. Chem. B 121 (41), 9647 – 9658 (2017)

[30] The Role of Curvature Effects in Liquid–Liquid Extraction: Assessing Organic Phase Mesoscopic Properties From MD Simulations
M. Duvail, S. van Damme, Ph. Guilbaud, Y. S. Chen, Th. Zemb, and J.-F. Dufrêche. Soft Matter 13, 5518 – 5526 (2017)

[29] Stability of Reverse Micelles in Rare-Earth Separation: a Chemical Model Based on a Molecular Approach
Y. S. Chen, M. Duvail, Ph. Guilbaud, and J.-F. Dufrêche. Phys. Chem. Chem. Phys. 19, 7094 – 7100 (2017)

[28] A Combined Spectroscopic/Molecular Dynamic Study for Investigating a Methyl Carboxylated PEI as a Potential Uranium Decorporation Agent
F. Lahrouch, A.-C. Chamayou, G. Creff, M. Duvail, Ch. Hennig, M. J. Lozano-Rodriguez, Ch. Den Auwer, and Ch. Di Giorgio. Inorg. Chem. 56 (3), 1300 – 1308 (2017)

[27] How Ion Condensation Occurs at a Charged Surface: a Molecular Dynamics Investigation of the Stern Layer for Water-silica Interfaces
S. Hocine, R. Hartkamp, B. Siboulet, M. Duvail, B. Coasne, P. Turq, and J.-F. Dufrêche. J. Phys. Chem. C 120, 963 – 973 (2016)

[26] Thermodynamics of Associated Electrolytes in Water: Molecular Dynamics Simulations of Sulfate Solutions
M. Duvail, A. Villard, T. N. Nguyen, and J.-F. Dufrêche. J. Phys. Chem. B 119, 11184 – 11195 (2015)

[25] Multi-scale modelling of Uranyl chloride solutions
T. N. Nguyen, M. Duvail, A. Villard, J. J. Molina, Ph. Guilbaud, and J.-F. Dufrêche. J. Chem. Phys. 142, 024501 – 11 (2015)

[24] Recycling metals by controlled transfer of ionic species: en route to ienaics
Th. Zemb, C. Bauer, P. Bauduin, L. Belloni, C. Déjugnat, O. Diat, V. Dubois, J.-F. Dufrêche, S. Dourdain, M. Duvail, C. Larpent, F. Testard, S. Pellet-Rostaing. Colloid Polym. Sci. 293(1), 1 – 22 (2015)

[23] Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: a mesoscopic modelling approach.
M. Duvail, L. Arleth, Th. Zemb and J.-F. Dufrêche. J. Chem. Phys. 140, 164711-11 (2014).

[22] Modelling of mutual diffusion for associated electrolytes solution: ZnSO4 and MgSO4 aqueous solutions.
J.-F. Dufrêche, M. Duvail, B. Siboulet, M. Jardat and O. Bernard. Mol. Phys. 112, 1405 – 1417 (2014).

[21] Numerical homogenization of electrokinetic equations in porous media using Lattice-Boltzmann simulations.
A. Obliger, M. Duvail, M. Jardat, D. Coelho, S. Békri and B. Rotenberg. Phys. Rev. E 88(1), 013019-11(2013)

[20] Accounting for adsorption and desorption in lattice Boltzmann simulations.
M. Levesque, M. Duvail, I. Pagonabarraga, D. Frenkel and B. Rotenberg. Phys. Rev. E 88(1), 013308-6 (2013).

[19] Mesoscopic modelling of frustration in microemulsions.
M. Duvail, J.-F. Dufrêche, L. Arleth and Th. Zemb. Phys. Chem. Chem. Phys. 15, 7133 (2013).

[18] Reverse aggregates as adaptative self-assembled systems for selective liquid-liquid cation extraction.
Th. Zemb, M. Duvail and J.-F. Dufrêche. Isr. J. Chem. 53, 108 (2013).

[17] Stiff and flexible water-poor microemulsions: disconnected and bicontinuous microstructures, their phase diagrams and scattering properties.
M. Duvail, J.-F. Dufrêche, L. Arleth and Th. Zemb. Colloid and Interface Chemistry for NanotechnologyProgress in Colloid and Interface Science Series, CRC Press (Published July 23, 2013).

[16] Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water.
M. Duvail, F. Martelli, P. Vitorge and R. Spezia. J. Chem. Phys. 135, 044503 (2011).

[15] Complexation of Lanthanides(III), Americium(III) and Uranium(VI) with Bitopic N,O Ligands: an Experimental and Theoretical Study.
C. Marie, M. Miguirditchian, D. Guillaumont, A. Tosseng, C. Berthon, Ph. Guilbaud, M. Duvail, J. Bisson, D. Guillaneux, M. Pipelier, and D. Dubreuil. Inorg. Chem. 50, 6557 (2011).

[14] Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution.
P. D'Angelo, A. Zitolo, V. Migliorati, G. Chillemi, M. Duvail, P. Vitorge, S. Abadie, and R. Spezia. Inorg. Chem. 50, 4572 (2011).

[13] Atomistic Description of Binary Lanthanoid Salt Solutions: A Coarse-Graining Approach.
J. J. Molina, M. Duvail, Ph. Guilbaud and J.-F. Dufrêche. J. Phys. Chem. B 115, 4329 (2011).

[12] Understanding the Nitrate Coordination to Eu3+ Ion in Solution by Potential of Mean Force Calculations.
M. Duvail and Ph. Guilbaud. Phys. Chem. Chem. Phys. 13, 5840 (2011).

[11] Temperature influence on lanthanoids (III) hydration from molecular dynamics simulations.
M. Duvail, P. Vitorge and R. Spezia. Chem. Phys. Lett. 498, 90 (2010).

[10] Coarse-Grained Lanthanoid Chloride Aqueous Solutions.
J. J. Molina, M. Duvail, Ph. Guilbaud and J.-F. Dufrêche. J. Mol. Liq. 153, 107 (2010).

[9] Molecular Dynamics Studies of Concentrated Binary Aqueous Solutions of Lanthanide Salts: Structural and Exchange Dynamics.
M. Duvail, A. Ruas, L. Venault, P. Moisy and Ph. Guilbaud. Inorg. Chem. 49, 519 (2010).

[8] A Dynamical Model to Understand Hydration Across the Lanthanide Series: Bridging the Gap between XAS Experiments and Microscopic Structure.
M. Duvail, P. Vitorge, P. D'Angelo and R. Spezia. Actinide-XAS-2008 Workshop Proceedings. Publication of the OECD/Nuclear Energy Agency (2009) pp 101-108.

[7] Molecular dynamics to rationalize EXAFS experiments: a dynamical model explaining hydration behaviour across the lanthanoid(III) series.
R. Spezia, M. Duvail, P. Vitorge and P. D'Angelo. J. Phys.: Conf. Ser. 190, 012056 (2009).

[6] What first principles molecular dynamics can tell us about EXAFS spectroscopy of radioactive cation in water.
M. Duvail, P. D'Angelo, M.-P. Gaigeot, P. Vitorge, R. Spezia. Radiochimica Acta 97, 339 (2009).

[5] Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: a molecular dynamics study of structure and dynamics of the whole series.
M. Duvail, P. Vitorge, R. Spezia. J. Chem. Phys. 130, 104501 (2009).

[4] A Dynamic Model to explain Hydration Behaviour along the Lanthanide Series.
M. Duvail, R. Spezia, P. Vitorge. Chem. Phys. Chem. 9, 693 (2008).

[3] Temperature Dependence of Hydrated La3+ in Liquid Water by Molecular Dynamics Simulations.
M. Duvail, R. Spezia, T. Cartailler, P. Vitorge. Chem. Phys. Lett. 448, 41 (2007).

[2] Pair Interaction Potentials with Explicit Polarization for Molecular Dynamics Simulations of La3+ in Bulk Water.
M. Duvail, M. Souaille, R. Spezia, T. Cartailler, P. Vitorge. J. Chem. Phys. 127, 034503 (2007).

[1] A Coupled Car-Parrinello Molecular Dynamics and EXAFS Data Analysis Investigation of Aqueous Co2+.
R. Spezia, M. Duvail, P. Vitorge, T. Cartailler, J. Tortajada, G. Chillemi, P. D'Angelo, M.-P. Gaigeot. J. Phys. Chem. A 110, 13081 (2006).