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Plan de cours (I)

Transparents/notes de cours transmis aux inscrits 

Energétique de la chimie séparative entre phases liquides  (Thomas Zemb)
Modélisation mésoscopique d’une interface liquide-liquide (Jean-François Dufrêche)

Pression osmotique de systèmes chargés ou à reconnaissance ionique (Thomas Zemb)
Interaction électrostatique en phase liquide et près d’une interface et pressions osmotiques (Jean-
François Dufrêche)

Une mise en évidence de l’interaction de van der Waals dans un système séparatif sans complexation
(Thomas Zemb)
Interaction de van der Waals et forces de dispersion (Jean-François Dufrêche)

Pressions de vapeur dans des solvants : cas des extractants (Thomas Zemb) 
Le mésoscopique des années 50 : DLVO et ses problèmes de cohérence (Jean-François Dufrêche)

Les forces d’hydratation : mythe ou réalité ?  (Thomas Zemb)
Transition de phases dans les verres  (Agnès Grandjean)



Plan de cours (II)

Transparents/notes de cours transmis aux inscrits

Effet des ultra-sons sur l’interface liquide-solide (Serguei Nikitenko)
Les bases de l’électro-cinétique : mobilité électrophorétique (Jean-François Dufrêche)

La « bataille pour l’eau » la déplétion des solutés et l’instabilité (Thomas Zemb)
La pression osmotique (systèmes neutres et chargés) et les forces de déplétion (Jean-François Dufrêche)

Caractérisation de fluides complexes par diffusion micelles, microémulsions, gels de polymères, membranes  
(Olivier Diat)
Vision Smoluchowski du transport des espèces (Jean-François Dufrêche)

Progrès récents dans la chimie moléculaire des actinides (Daniel Meyer)
Structure électronique des éléments de transition 5f. (Daniel Meyer)

Actinide : des l’ion à la nanoparticule  (Daniel Meyer)
Vision Smoluchovski de la cinétique chimie entre nanoparticules et colloïdes (Jean-François Dufrêche)

Energie de courbure dans les films flexibles : diagrammes de phases  (Thomas Zemb
Agrégation de nanoparticules : facteurs de forme, facteurs de structure théoriques et information contenue 
dans ces termes (Olivier Diat)

La séparation isotopique par voie chimique : les observations sont-elles confrontables aux théories ? 
(Stéphane Pellet-Rostaing)
Théorie de la séparation isotopique par complexation : au-delà de Bodenhausen ? (Orateur à définir)

I- Energétique de la chimie séparative entre 
phases liquides

..une approche « nanosciences »

0.6  kcal/mole =  1kT/particule = 2,5 kJ/mole

T > τ . exp ( U/kT)



Eléments à séparer

Source: monographies DEN
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 TRANSURANIICS ACTIVATION PRODUCTS 
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Cycle de principe:  RM, W/O ME, EME…

K. Osseo-Asare, Adv. Colloid Interface Sci. 37 (1991) 123

solution
U, Pu, 
PFs, AMs

Coques

Combustible usé HNO3

TBP

PFs, 
AMs

U

Pu

DISSOLUTION EXTRACTION
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Séparation par étages successifs

Cout entropique idéal de la séparation

x= 0,5 vers  xriche= 0,9 et xpauvre=0,1  = >  Coût =1 kJ/mole
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Entropie cachée de l’extraction liquide-
liquide

1 mole qui se transforme en trimères = >  Coût =2 kJ/mole
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Une séparation liquide-liquide réelle

Modèles d’agrégats sous contraintes (Ph. Guilbaud)  
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Une réaction moléculaire prépondérante  
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Solutions idéales, pas d’agrégation, 
dosage en dilué, avec un “sel de fond” :

Avantage: peut se comparer à la calorimétrie de 
mélange (en milieu homogène ?).

L. Berthon, M C Charbonnel et al.
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Une réaction moléculaire supposée  prépondérante 

   0

   3

   6

   9

Temps,heure
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P,µW

DMDBTDMA 0,5 mol.L-1 dans le 
dodécane [Nd]init = 0,1 mol.L-1 dans 
NaNO3 2,2 mol.L-1

10 à 40°C

Injection 5µL DMDBTDMA – dodécane  
dans  0,8 mL Nd 0,1 mol.L-1 – NaNO3 -
25°C

∆H = -63 ± 3 kJ.mol-1 ∆H = -62 ± 3 kJ.mol-1

N

CH3

N

CH3

CH3CH3

CH3

O

O

Relation Van’t Hoff Calorimétrie de mélange

J L Flandin, M C Charbonnel et al. 

Bilan :  décomplexation, recomplexation, aggrégation
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Exemple: Sélectivité de l’extraction AmIII/EuIII (BTP)

∆HM ext= ∆Hdéshyd + ∆H M-ligand+ ∆H’
with ∆H’= ∆Hnitrate transfert + ∆Hligand relaxation + ∆Ηorganic phase 

reorganisation+…

∆(∆Hext)Am/Eu = ∆(∆Hdéshyd)Am/Eu + ∆(∆HM-ligand)Am/Eu

nPr-BTP

∆Hext 
(kJ.mol-1)

Am(III) -47 ± 6

Eu(III) -31 ± 6 M3+
aq+ BTP + phase orga init. 

∆Hdéshyd

∆Hext

M3++ BTP + init.org. 
phase

M(BTP)3(NO3)3 + phase orga 
finale

∆HM-Ligand.

+ ∆H’

∆H’Am≈ ∆H’Eu pour un ligand donné et pour des conditions d’extraction 
similaires

Données bibliographiques :
+80 kJ/mol

M C Charbonnel et al. 
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Energie de Born d’un ion dans une  phase solvant

J. Israelachvili  « Intermolecular and surface forces »

Longueur de Bjerrum:     

Longueur de Gouy-Chapmann

Longueur d’écran 

Importance de la solubilité des sels dans les huiles avec traces d’eau en co-solvant 

LBjerrum = q /(4πεε0) = 0.7nm(eau)

LGC =1/(2πLBjerrum .σ) = diamètre _ des_ ions{ }

l =1/κ = ρ.q2.zi
2 /ε0.εkT. = 3nm _10−2 M{ }

Près d’une surface chargée: relation de Grahame    
σ = ε0.ε.κ.ψ0 = 1charge /nm2,1M => 60mV : 2kT{ }
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Energie d’hydratation dans la phase aqueuse

Calcul  des coefficients d’ activité : cf cours JFD 

Couches suivantes :
Les ions en présence sont en compétition
pour l’eau des couches d’hydratation 

Premiers voisins :

DH = 2000 à 4000 kJ/mole

Ion dans l’eau  : cosmotrope/chaotrope

Hydratation  plus  chaotrope/cosmotrope  
(Réf:  Y. Marcus + K. Collins, W. Kunz, P. Jungwirth, R.R. Netz…)



Les agrégats sont des colloïdes  « nano-x »

Cas pratiques: Kruyt, Lyklema,  Hunter-Napper-Israelachvili-Ninham…

h

d d

En pratique: h≠4nm
2d= 1nm

Les agrégats sont des colloïdes  « nano-x »

Ce type de potentiel-bilan  permet de prédire les courbes de troisième phase
En fonction de l’extractant-acidité-sel de fond… (F. Testard et al.)

h

d d

En pratique: h≠4nm
2d= 1nm



Ne pas oublier la déplétion par le solvant

Attention à l’ énergie ES du cœur en raison des charges partielles ! (PG) 

Equation d’état « latérale » à prendre en compte 

Aire par molécule: minimise la fonction G(a) , tension nulle
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Application numérique:
Enthalpie:
Incrément d’aire huile-polaire
20 mJ/m2

0,5 nm2/molécule par ion extrait

25 kT/ion extrait !



Extraction : diagramme de phases

Y. Chevalier et Th. Z.  Reports in Progress in Physics  (1991)

courbure d’un film très hydrophobe 

Energie de courbure associée :
F= ½ K* (p-p0)^2  

l=Ragrégat - Rpolaire

Aire par molécule: 

σ ≈ 120 Å2

Surface extérieure 
par extractant σ’

l

Ragrégat

Rpolaire

Paramètre de packing p

pour un extractant dans un agrégat
P =

V (Nagg,ions)
σ .(Ragrégat − Rpolaire)



Bilan d’énergie de courbure du film

Energie de courbure du film d’extractant : F= ½ K* (p-p0)^2  
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t P Application numérique:
Le film se déplie quand l’ion est 
extrait
Estimation approxiative
P0= 2
F = 1 kT 

0,5 kT/ion par ion extrait TBP
Mais beaucoup plus si chaînes 
longues
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B B

B B

B
B

Gaz parfait s’adsorbant sur une surface active

Séparation: ions ayant des affinités différentes 
pour interface divisée dispersée dans le solvant ,
externe au réservoir initial.
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Somme d’isothermes de Langmuir (en compétition):

avec θX: le taux d’occupation

et Kad,X: la constante liée à l’état d’adsoption X.

Spéciation supramoléculaire nécessaire: 

Adsorption de Mn+ est une somme d’isothermes

Chaque diamide est un site d’adsorption possible 
Σ: la surface interne au solvant offerte par molécule –mesurable 
rX, neutrons- :

σ*t][Extractan=Σ

[ ]aggaggmonoorgtot aggregatesNmonomersM θθ *][**][][ , +=

Fabienne Testard et al: Liquid-liquid extraction: An adsorption isotherm at a 
divided interface ?  Comptes Rendus Chimie  (2007),  10(10-11),  1034-1041.

Vision mésoscopique: isotherme 

Livre Adamson et Gast

Conversion d’une constante de réaction
En énergie interfaciale  :

Isotherme d’adsorption de type Langmuir

x
xmax

=
KadsC

1+ KadsC

Avec C la concentration du soluté libre dans la 
solution (ie non adsorbé) 
x la fraction molaire de soluté adsorbé
xmax , le rapport molaire max à la saturation

Kads = S.p.e
−

DG
RT
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Ratio DMD/Eu > 5
Aggregates
Nagg = 4.4

Nagg increases
Ratio DMD/Eu < 5

experimen
data

Langmuir
Isotherm

Kagg = 2.2 L.mol-1  

Adsorption isotherm of the aggregates Nagg = 4.4 

Kmono = 0,0025 L.mol-1

ΔG°= -1.95 kJ.mol-1

ΔG°= -0.79 kT/(Eu,3NO3)

[DMD] = 0.5 M contacted LiNO3/Eu(NO3)3(0.01 to 0.5 M)

eqorg,

aggeqorg
agg s][aggregate4.4

[Eu]
*

,,=θ

obtained taking into 
account the speciation
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Jarvis and Scherman, J.Phys.Chem. 72, 77 (1968)
Weissenborn, P. K.; Pugh, R. J. J. Col l. Int. Sci. 1996, 184, 550.

HCl

HClO4

Les sels sont séparés par l’interface
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Interprétation en énergie d’adsorption, dépletion eau-air

Loi de Gibbs: Γ(mol /m2) =
−1
RT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .

∂γ(N /m)
∂ lnc

Application numérique :
2. 10-6 mole/m2
Epaisseur GC  0.5 nm
interface : 4 mole/dm3

solvant : 1 mole/dm3

Exp ( Boltzmann)  =  4/1  => DG = +:-1,5 kT ion/interface

La paire d’ions extrait nuclée des agrégats !

Variation de la cmc avec l’ion extrait ( Ch. Dejugnat et al.- non publié) 

Application numérique:  sans ions cmc : 0.15 M,
avec HNO3 2M: cmc=0.05 M
theta= 0.5  => DG = 0,5 kT/extractant



Energétique aux interfaces neutres:  D1kT=S=3

Démarche similaire miscibilité/solubilité polymères, formulations cristaux liquides,
mélanges de colloïdes …

Complexation de l’ion par eau :  H = 2000 kT
Dé-complexation + Re-complexation par (Extractant)  :

H = -60 kT , DG =  -5kT ?

Energie de Born paire d’ion dans le cœur:  50 kT
Contact polaire/apolaire :  25 kT
Effet Hofmeister  : 1 kT
Agrégation de l’Extractant : 3 kT en H et 3 kT en TS
Variation de courbure, énergie élastique : 0.5 kT
Interaction/agrégat : 0.5 kT
Nucléation d’agrégat : 0.5 kT

Bilan énergie libre isotherme d’adsorption :  - 1kT
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Cinétique contrôlée par: 
Ion près d’une interface macroscopique 

chargée par les autres ions 

Cinétique ? 

Ref:  Overbeck, Lyklema, Belloni, Netz …
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Comparaison BATPs et iPr-BTP

Objectif : Prédire des Kd (T, c, pH, autres ions)
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