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Electrical Double Layer

Separation chemistry: liquid/liquid
and solid/liquid interfaces

= liquid/liquid extraction

= diffusion in porous media (solid/
liquid)

Charged interface:

Non neutral interfaces: the two
surfaces are charged

Ex : solid/liquid

Qsolid # 0

Qliquid # 0

(but Qsolid + Qliquid =0




Origin of the charge
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Desequilibrium in the volume charge

= jonic solids
= exces or defects of cation / anions

= Ex : Agl, clays, etc...

Surface chemistry
= Groups Si-OH <--> Si-O- <--> SIOH2+
= Depends on the pH

Nonpolar tail

= localised charge Pouarhead\
Charged surfactant at the interface é’é‘é’é ] 'é‘
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= mobile charge 2
@

9 <9 Water » T



A very old story

S

Hermann Ludwig von Helmholtz
(1821-1894)

Electrical Double Layers (EDL)
are similar to capacitors !

soid  liquid

Counter-10ns: 10ns whose signe 1s
the opposite of the solid suface
Conter-1ons are sticked to the

surface (Helmholtz layer) Helmholtz  Electrolyte
U minimum Layer solution




_ ‘% E% 106 years ago...

/ Thermodynamically, if T 1s known, we
do not minimize U but F=U-TS

Louis-Georges Gouy
(1909)

The electrostatic attraction of the
counterions 1s somewhat counterbalanced
by the thermal agitation

solid - liquid

F=U-TS minimum  Diffuse layer = effect of the temperature



Gouy-Chapman theory

‘% n distribution at the interface

c/ M

95% of the calculations are still based on that approach

Poisson-Boltzmann Equation ¢ ,(x)= " exp(_ qi/(Tx))
B

Boltzmann + Poisson equations:

Y 4,C.(x)
AV(.X) — pelec(x) N |
gogr 808;»
0.20 T o
#(0) = 100 mV
0.15 - _
0.10 - o
0.05 — B
c =001 M
0_00u__(.:_a£m—n-— I I | -
0 5 10 15 20
x / nm




‘% E% Gouy-Chapman theory
Characteristic length of the EDL
Gouy length L
Size of the heavily condensed counterions
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Typically Angstrom. Condensed ions are in the first layer of

the solvent molecules

L
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Debye distance Ly=k"
Size of the diffusion layer: distance ‘ ‘ ‘
It takes to compensate the soldid charge.

Depends on the ionic force 1=%C,Z,-2 BN | @ +)
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Good things about Gouy-Chapman theory

&

Gouy-Chapman theory

<= valid for monovalent electrolyte (i.e.1/1 ex NaCl) in water if the
sold charge is not too important...

= At any case, far away from the interface V(x) and C{(x) are
proportional to exp(-«x) (but k is sometimes different from the
Debye inverse length)

<= globally gives correct results if the parameters are renormalized
(effective charges, effective potential)

= Relatively simple calculations



Stern layer

&

Otto Stern
(1888 -1969)

Add a layer !

Stern model
- first layer of ions different from the —
diffuse layer _
- « triple layer » model

- unknown value-> fitting (ver B

convenient for modelling !)

Diffuse layer (GC approach)



Molecular nature of the solvent

Counterions distributions around
two charged sheets (clays)
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Molecular nature of the solvent

Counterions distributions around
two charged sheets (clays)
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In average GC theory is valid for ions
distributions as long as the charges are not M/J -
- too important and as solvation/desolvation : 4
o phenomena can be neglected
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Stern layer: not that interesting concept...
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‘% E% Poisson-Boltzmann (or Gouy-Chapman)
Specificity of ions

<= only two parameters: charge and size with respect to the
interface

<= wrong at high ionic charge (typically if valency >2)

= neglect ion sizes whereas the concentration is very high !
<= neglect the molecular nature of the solvent (desolvation)
= neglect polarisability forces (Van der Waals)

= Separation surface is fixed and it does not fluctates

Stern Diffuse

Stern layer
layer layer
= all these effects are hidden in the ———
Stern layer whose parameters can : ® @ -
be fitted... Z >~ @
) @ -



‘E% E% Ionic correlation effects (high valency 2 or 3)
ffects of the ionic correlations (highly charged ions)

<= Effective charge (Zeff) of the surface as a function of the natural

charge (structural charge Z)
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Zsat

Zeff
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Electrolyte 2-2 or 3-3. Correlation effects

A
Zsat

Zeff

cf Alexander, Kjellander, Levin, Skhlovskii, etc
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And even sometimes

Surface charge is
iInversed !
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‘% E% Polarisability of the solvants
Onsager and Samara

Polarisability of the

I solvant
lon close to the interface

is expelled because of hte
solvant polarisation

Modelling: image charge
Q’

Onsager and Samara




Polarisability of the ions

Jungwirth et Tobias, J. Phys. Chem. B 105, 10468 (2001)

Molecular models
p(2)/p,
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~ el, Bigpolarisable ions attracted by
12,4 the interface
8

(b} 1.2 M NaCl

Figure 9. Snapshots viewed from the air side from MD simulations
of the solution/air intedfaces of 1.2 M sodium halide solutions: (a)
sodium fluonde, (b) sodium chloride. (¢) sodium bromide. and (d)
sodium iodide. Coloring scheme: fluoride ion, black; chloride anion.
yellow; bromide anion, orange: iodide anion, magenta: sodium cation,
groen; water oxygen, blue; water hydrogen, gray.




Polarisability of the ions

&

lons attracted to a water/oil interface is it is polarisable

c 2
' Effect due to the polarisation of the

ions

The polarisation of the interface
creates a dipolar moment on the ion
which attracts it at the interface

el Stabilizing effect
Depends strongly on the charge and
polarisability of the ions

Numerically
G

’
E pinduit

= kg T for polarisable ions
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Depletion of big ions

A big size is enough to attract a big ion at the interface

O

/

Domain
forbidden to the
solvent because
of the solvent
molecule size

|

Smaller
forbidden
domain if the ion
is at the
interface

—> bigger solvent
entropy

- stable

Effect due to the solvant entropy

Can be calculated (Asakura et
Oosawa potential)

Increases the polarisability attraction
(big ions are polarisable)

Brazilian Nuts effect
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Role of the ion hydrated sizes

Size (hydrated diameter of the ions)

- Important role in solution (departure from ideality)

+ + + + + +
N
20
O,

- complex role at interface /

High ion centration (condensed double layer):
enhance repulsion between counter-ions

Small ion concentration: +/- predominant - decreases

electrostatic attraction between + and - (add a
repulsion force between ion). EDL size is bigger.
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Big ions (ex )
low solvation

« Free » water
around these ions

Size effects

Simple monovalent small ions

Small ions (ex Li*)
high solvation
Organized
solvation layer
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Small ions are preferentially
associated to small sites
(solvent expelled - entropy

gain)

Big ions are preferentially
associated to big sites (they
do not have to expell water
to be associated)

solvation/desolvation
guestion : depends to the
lon size compared to hte
one of the interface site
(hydrophobic/phillic force)

Corresponding rules

ions
Cs* NH,*
o . 0 Uu&
hard 1 soft
& J
RCOO~ 5 RSO,

SR

carhoxylate phosphate sulfate sulfonate

sites de surfaces

Collins 2004



The Nature is not simple !

Vlolecular simulations of cations at a montmorillonite clay surface

« Cesium ions are dehydrated because clay cavities exactly
correspond to the ion size - solvation by the surface instead of
solvation by water

« Sodium (and further) ions stay solvated by water.
Beware of general laws...

Specific effects are subtle effects...
Marry et al. 2008



